Purification of polyhydroxybutyrate synthase from its native organism, Ralstonia eutropha: implications for the initiation and elongation of polymer formation in vivo.
نویسندگان
چکیده
Class I polyhydroxybutyrate (PHB) synthase (PhaC) from Ralstonia eutropha catalyzes the formation of PHB from (R)-3-hydroxybutyryl-CoA, ultimately resulting in the formation of insoluble granules. Previous mechanistic studies of R. eutropha PhaC, purified from Escherichia coli (PhaC(Ec)), demonstrated that the polymer elongation rate is much faster than the initiation rate. In an effort to identify a factor(s) from the native organism that might prime the synthase and increase the rate of polymer initiation, an N-terminally Strep2-tagged phaC (Strep2-PhaC(Re)) was constructed and integrated into the R. eutropha genome in place of wild-type phaC. Strep2-PhaC(Re) was expressed and purified by affinity chromatography from R. eutropha grown in nutrient-rich TSB medium for 4 h (peak production PHB, 15% cell dry weight) and 24 h (PHB, 2% cell dry weight). Analysis of the purified PhaC by size exclusion chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and gel permeation chromatography revealed that it unexpectedly copurified with the phasin protein, PhaP1, and with soluble PHB (M(w) = 350 kDa) in a "high-molecular weight" (HMW) complex and in monomeric/dimeric (M/D) forms with no associated PhaP1 or PHB. Assays for monitoring the formation of PHB in the HMW complex showed no lag phase in CoA release, in contrast to M/D forms of PhaC(Re) (and PhaC(Ec)), suggesting that PhaC in the HMW fraction has been isolated in a PHB-primed form. The presence of primed and nonprimed PhaC suggests that the elongation rate for PHB formation is also faster than the initiation rate in vivo. A modified micelle model for granule genesis is proposed to accommodate the reported observations.
منابع مشابه
Mechanistic studies on class I polyhydroxybutyrate (PHB) synthase from Ralstonia eutropha: class I and III synthases share a similar catalytic mechanism.
The Class I and III polyhydroxybutyrate (PHB) synthases from Ralstonia eutropha and Chromatium vinosum, respectively, catalyze the polymerization of beta-hydroxybutyryl-coenzyme A (HBCoA) to generate PHB. These synthases have different molecular weights, subunit composition, and kinetic properties. Recent studies with the C. vinosum synthase suggested that it is structurally homologous to bacte...
متن کاملIntegrated recombinant protein expression and purification platform based on Ralstonia eutropha.
Protein purification of recombinant proteins constitutes a significant cost of biomanufacturing and various efforts have been directed at developing more efficient purification methods. We describe a protein purification scheme wherein Ralstonia eutropha is used to produce its own "affinity matrix," thereby eliminating the need for external chromatographic purification steps. This approach is b...
متن کاملجداسازی و کلونینگ سه ژن اپران ژنی پلیهیدروکسی بوتیرات تولیدکننده زیست ماده پلاستیکی تخریبپذیر
Polyhydroxybutyrate (PHB) is a polyhydroxy alkanote (PHA) which produces in ralstonia eutropha by three enzymes, including Beta-ketothiolase, NADPH-dependent acetoacetyl-CoA reductase and PHB synthase. These three enzymes are encoded by phbA, phbB and phbC respectively. There is considerable interest in Polyhidroxybutirate, since it can be used as biodegradable plastic, which under optimal cond...
متن کاملNew insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate.
Phasins are proteins that are proposed to play important roles in polyhydroxyalkanoate synthesis and granule formation. Here the phasin PhaP of Ralstonia eutropha has been analyzed with regard to its role in the synthesis of polyhydroxybutyrate (PHB). Purified recombinant PhaP, antibodies against PhaP, and an R. eutropha phaP deletion strain have been generated for this analysis. Studies with t...
متن کاملHydrogen Oxidizing Bacteria as Poly(hydroxybutyrate) Producers
Batch culture of Ralstonia eutropha using the recycled gas closed circuit culture system was conducted in order to develop a practical fermentation system for industrial autotrophic culture for poly (hydroxybutrate) production. The gas phase of the culture system consisted of substrate gas so that gases in this culture could be recycled as long as the amount of the gas consumed would be repleni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 51 11 شماره
صفحات -
تاریخ انتشار 2012